Light non-aqueous phase liquids (LNAPL) are considered to be a composition-based risk, containing multiple chemical ingredients that release dissolved- and vapor-phase plumes. In dissolved form, there is a saturation-based risk as the water source expands, affecting groundwater aquifers on a larger scale in the aquifer. As a typical pollutant found in petrochemical contaminated sites, the migration and transformation of benzene, toluene, ethylbenzene, and o-xylene (BTEX) between gas, aqueous, and NAPL phases are distinctly affected by groundwater table fluctuation (GTF). BTEX multiphase migration and transformation pattern in a petrochemical factory at the riverside was simulated based on the TMVOC model in differentiating pollution distribution and interphase transformation under stable or fluctuating groundwater tables conditions. TMVOC model performed an excellent simulation effect on the migration and transformation of BTEX in GTF circumstances. In comparison with the stable groundwater table condition, the BTEX pollution depth under GTF increased by 0.5m, the pollution area increased by 25%, and the total mass increased by 0.12 × 102kg. In both cases, the mass reduction of NAPL-phase pollutants was more significant than the total mass reduction of pollutants, and GTF further promoted the mass conversion of NAPL-phase pollutants to water pollutants. Prominently, as the groundwater table rises, the GTF can correct for evacuation, and the transport flux of gaseous pollutants at the atmospheric boundary decreases with increasing transport distance. Furthermore, descended groundwater table will intensify the transmission flux of gaseous pollutants at the atmospheric boundary with the transmission range expanding, which can be harmful to human health on the surface due to gaseous pollutants entering into the air.
Read full abstract