Recent advancements in materials design have driven the scientific community to explore phosphor materials for multifunctional applications. This study presents the multimodal light emission (downshifting - DS, quantum cutting - QC, and upconversion - UC) from Pr3+/Yb3+ activated NaLa(MoO4)2 phosphors for multifunctional applications. Under blue (449 nm) and NIR (980 nm) excitation, co-doped phosphors emit visible light through DS and UC processes caused by different f-f transitions of Pr3+ ions. Additionally, when the co-doped samples are excited with blue light, they emit a near-infrared (NIR) light band ranging from 900 to 1050 nm. This is caused by the f-f transition of Yb3+ resulting from energy transfer from a single Pr3+ ion to a pair of Yb3+ ions through the QC process. Concurrently, in-depth investigations were conducted to understand the concentration and thermal quenching mechanism. Firstly, the applicability of phosphors in optical thermometry using the luminescence intensity ratio (LIR) technique was explored, with the maximum relative sensitivity of 0.41% K-1 (448 K). A phosphor-coated LED (pc-LED) was constructed by coupling NaLa0.97Pr0.03(MoO4)2 with a blue LED chip (InGaN). Furthermore, based on the observed optical properties of the prepared phosphor, its application in improving the photovoltaic performance of solar cells and indoor plant applications is systematically discussed.
Read full abstract