Excessive nutrients transported from agricultural fields into the environment are causing environmental and ecological problems. This study uses an integrated multi-media modeling system version 1 (IMMMS 1.0) linking air, land surface, and watershed processes to assess corn grain yield and nitrogen (N) losses resulting from changing fertilization conditions across the contiguous United States. Two fertilizer management scenarios (FMSs) were compared and evaluated: 2006 FMS, developed based on the 2006 fertilizer sales data; and 2011 FMS, developed based on 2011 fertilizer sales and manure. Corn grain yields captured historical reported values with average percent errors of 4.8% and 0.7% for the 2006 FMS and 2011 FMS, respectively. Increased nitrogen (N) application of 21.2% resulted in a slightly increased corn grain yield of 5% in the 2011 FMS, but the simulated total N loss (through denitrification, volatilization, water, and sediment) increased to 49.3%. A better correlation was identified between crop N uptake and N application in the 2006 FMS (R2 = 0.60) than the 2011 FMS (R2 = 0.51), indicating that applied N was better utilized by crops in the 2006 FMS. Animal manure could create nutrient surpluses and lead to greater N loss, as identified in the regions of the Pacific and Southern Plains in the 2011 FMS. Manure nutrient management is important and urgently needed to protect our air and water quality. The IMMMS 1.0 is responsive to different FMSs and can be utilized to address alternative management scenarios to determine their impact when addressing the sustainability of food production and environmental issues.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3635 Articles
Published in last 50 years
Related Topics
Articles published on Multimedia
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3526 Search results
Sort by Recency