<span lang="EN-US">The significance of brain computer interface (BCI) systems is immensely high, especially for disabled people and patients with nervous system failure. Therefore, in this study, adaptive filtering-based component analysis (AFCA) model is presented to enhance target box identification efficiency at varied flickering frequencies in a visual stimulation process by efficient acquisition of electroencephalogram (EEG) signals for the application of steady-state visually evoked potential based BCI system. Furthermore, optimization of proposed AFCA model is performed based on the maximized reproducibility of correlated components. A multimedia authoring and management using your eyes and mind (MAMEM) steady-state visual evoked potential (SSVEP) dataset is utilized for efficient training of EEG signals and background entities are eliminated using adaptive filters in a pre-processing stage. Additionally, spatial filtering components are obtained to detect target flickering box based on the obtained quality features. Performance is measured by acquisition of SSVEP signals in terms of reconstruction efficiency, classification accuracy and information transfer rate (ITR) using proposed AFCA model. Mean classification accuracy for all 11 subject is 93.48% and ITR is 308.23 bpm. Further, classification accuracy is relatively higher than various SSVEP classification algorithms.</span>
Read full abstract