The intra-species genetic diversity of Cryptosporidium parvum in dairy cattle farms in the central area of Colombia was investigated using a multilocus fragment typing approach with nine variable-number tandem-repeat (VNTR) loci and the gp60 gene. Genomic DNA of 70 C. parvum isolates from pre-weaned calves in 32 farms was analysed. Most markers showed two (ML1, MSB, CP47, and MSC6-7) or three alleles (5B12, Cgd2_3850, and Cgd6_5400), although they exhibited a major allele accounting for more than 69% of specimens, which explains their low discriminatory index. The TP14 microsatellite was monomorphic while a total of six alleles were found at the ML2 microsatellite. The two novel allelic variants (219bp, 245bp) exhibited by more than 36% of specimens at the latter locus were a remarkable finding. The 10-markers typing tool provided a Hunter-Gaston discriminatory value of 0.940 (95% CI, 0.918 – 0.961) and differentiated 22 multilocus subtypes (MLTs). Nevertheless, the combination of the three most informative markers (ML2, gp60, and Cgd2_3850) differentiated 68% of MLTs and hardly impaired the discriminatory index. The fact that many MLTs (13/22) were distinctive for individual farms provides evidence for the endemic nature of the infection and the major role played by transmission within farms. The eBURST algorithm suggested a low degree of genetic divergence. All but three MLTs were clustered in a clonal complex with a star-like topology typical of clonal expansion, however linkage analysis did not find evidence of linkage disequilibrium. Bayesian analysis also identified a genetic structure with K = 3 being the best estimation of ancestral clusters, although a large proportion of isolates (35%) could not be allocated to a single population, which indicates their mixed origin. The results confirm the genetic distinctiveness of C. parvum in cattle farms in this geographical area. This is the first multilocus analysis on the intra-specific variability of Cryptosporidium from calves in South America.
Read full abstract