Objective:This study demonstrates a novel electronic portal imaging device (EPID)-based forward dosimetry approach for pretreatment quality assurance aided by a treatment planning system (TPS).Materials and Methods:Dynamic multileaf collimator intensity-modulated radiation therapy (IMRT) plans were delivered in EPID and fluence was captured on a beam-by-beam basis (FEPID). An open field having dimensions equal to those of the largest IMRT field was used in the TPS to obtain the transmitted fluence. This represented the patient-specific heterogeneity correction (Fhet). To obtain the resultant heterogeneity-corrected fluence, EPID measured fluence was corrected for the TPS generated heterogeneity (FResultant = FEPID × Fhet). Next, the calculated fluence per beam basis was collected from TPS (FTPS). Finally, FResultant and FTPS were compared using a 3% percentage dose difference (% DD)-3 mm distance to agreement [DTA] gamma analysis in an isocentric plane (two-dimensional [2D]) and multiple planes (quasi three-dimensional [3D]) orthogonal to the beam axis.Results:The 2D heterogeneity-corrected dose reconstruction revealed a mean γ passing of the pelvis, thorax, and head-and-neck cases of 96.3% ±2.0%, 96.3% ±1.8%, and 96.1% ±2.2%, respectively. Quasi-3D γ passing for the pelvis, thorax, and head-and-neck cases were 97.5% ±1.4%, 96.3% ±2.4%, and 97.5% ±1.0%, respectively.Conclusion:EPID dosimetry produced an inferior result due to no heterogeneity corrections for sites such as the lung and esophagus. Incorporating TPS-based heterogeneity correction improved the EPID dosimetry result for those sites with large heterogeneity.
Read full abstract