In this work we propose a bottom up approach founded on the assembly of building blocks by solvent induced microparticle sintering to realize multifunctional polymer scaffolds with predefined pore dimension and fully percolative pathway, able to include interspersing microdepot for the release of bioactive molecules. The aim of this study was to develop a versatile method of microspheres sintering based on the partial dissolution of the surface of adjacent microparticles and to compare it with melting induced microspheres sintering, just developed in a previous work. The two techniques were compared in terms of morphology, porosity and mechanical properties. The high potential of customizing the sintering process by the proper selection of the sintering techniques as well as microparticles with different features (e.g., material, size, shape, inner porosity) allows obtaining a wide pattern of micro/nanostructures with bio-inspired mechanical response so satisfying all basic requirements of a "smart" scaffold for bone tissue engineering.