Density matrix embedding theory (DMET) is a fully quantum-mechanical embedding method which shows great promise as a method of defeating the inherent exponential cost scaling of multiconfigurational wave function-based calculations by breaking large systems into smaller, coupled subsystems. However, we recently [ Pham et al. J. Chem. Theory Comput. 2018 , 14 , 1960 .] encountered evidence that the approximate single-determinantal bath picture inherent to DMET is sometimes problematic when the complete active space self-consistent field (CASSCF) is used as a solver and the method is applied to realistic models of strongly correlated molecules. Here, we show this problem can be defeated by generalizing DMET to use a multiconfigurational wave function as a bath without sacrificing practically attractive features of DMET, such as a second-quantization form of the embedded subsystem Hamiltonian, by dividing the active space into unentangled active subspaces each localized to one fragment. We introduce the term localized active space (LAS) to refer to this kind of wave function. The LAS bath wave function can be obtained by the DMET algorithm itself in a self-consistent manner, and we refer to this approach, introduced here for the first time, as the localized active space self-consistent field (LASSCF) method. LASSCF exploits a modified DMET algorithm, but it is a variational wave function method; it does not require DMET's ambiguous error function minimization, and it reproduces full-molecule CASSCF in cases where comparable DMET calculations fail. Our results for test calculations on the nitrogen double-bond dissociation potential energy curves of several diazene molecules suggest that LASSCF can be an appropriate starting point for a perturbative treatment. Outside of the context of embedding, the LAS wave function is inherently an attractive alternative to a CAS wave function because of its favorable cost scaling, which is exponential only with respect to the size of individual fragment active subspaces, rather than the whole active space of the entire system.
Read full abstract