Cellular developments encourage the integration of both 4G, Wi-Fi, and 5G network technologies into one device; an antenna is a tool that can be used to support the integration of these networks. A microstrip antenna is an antenna that is small, light, thin, easy to fabricate, and can be used in long ranges. In this paper, a microstrip antenna is designed on a printed circuit board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm. This research aims to design a microstrip antenna that is capable of working on 4G (2.3 GHz), Wi-Fi (2.4 GHz), and 5G 3.5 GHZ) frequencies in one antenna. The microstrip antenna is designed on a Printed Circuit Board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm, rectangular shaped patches, and each patch is connected using a bridging method. Next, the antenna is simulated using CST Suite 2021 software. Simulation results at frequencies of 2.3 GHz, 2.4 GHz, and 3.5 GHz produce return losses of -23.70, -22.87, and -20.60, VSWR values of 1, respectively. .13, 1.15, and 1.20, the bandwidth values are 6.27%, 3.84%, and 5.84%, respectively, and the gain values are 4.69 dBi, 8.53 dBi, and 3.49 dBi.
Read full abstract