A scaled-up version of a 6–8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth’s Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used “Toshiba-F” grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a 0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a 0 / b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19–24 GPa at 19 MN press load limits. The assemblies with a low a 0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a 0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5–11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure Res., 30, 175), whereas the 14/6, 18/8 ( Frost et al., 2004), and 18/10 assemblies are suitable for 22–24, 19–23, and 11–19 GPa pressure ranges, respectively. The maximum pressure generation achieved in the present study is 24 GPa, using the 14/6 assembly. This appears to be the maximum pressure level attainable by using WC anvils.
Read full abstract