To improve the performance of intelligent products and reasonably distribute the load of the loading robot, a multi-objective, and multi-objective (Traveling-salesman-problem, TSP) mathematical model was established. A genetic algorithm based on speed invariant and the elite algorithm is proposed to solve the multi-TSP assignment problem. To ensure the integration of the population, a population resettlement strategy with elite lakes was proposed to improve the probability of population transfer to the best Pareto solution. The experiment verified that this strategy can approach the optimal solution more closely during the population convergence process, and compared it with traditional Multi TSP algorithms and single function multi-objective Multi TSP algorithms. By comparing the total distance and maximum deviation of multiple robot systems, it is proven that this algorithm can effectively balance the path length of each robot in task allocation. From the research results, it can be seen that in genetic algorithms, resetting the population after reaching precocity can maintain the optimization characteristics of the population and have a high probability of obtaining Pareto solutions. At the same time, storing elite individuals from previous convergent populations for optimization can better obtain Pareto solutions.
Read full abstract