A methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto optimal set representing the best possible trade-offs between conflicting design objectives is then iteratively refined. In each iteration, a limited number of high-fidelity EM model responses are incorporated into the RSA model using co-kriging. The enhanced RSA model is subsequently re-optimized to yield the refined Pareto set. Combination of low- and high-fidelity simulations as well as co-kriging results in the low overall optimization cost. The proposed approach is validated using two UWB antenna examples.