Chemical accidents significantly impact environmental and human health. However, studies investigating the impacts of such accidents have primarily focused on single-route exposures, potentially underestimating the extent of damage. This study aimed to conduct an aggregate risk assessment for multi-route exposure to hazardous chemicals to ensure systematic and rational management of the health impacts on residents exposed to chemical accidents, considering the behavior of a hazardous chemical from a chemical accident within environmental media. Drawing upon a real chemical accident that occurred in Siheung, Gyeonggi-do, in 2019, leakage of 500 L of toluene over an hour was assumed. Employing a multimedia environmental dynamics model, the time-dependent concentrations across various environmental media were calculated, and the average daily dose (ADD), hazard quotient (HQ), and hazard index (HI) for each exposure route included in the multi-route exposure assessment were derived. Health risks were deemed present if the calculated HQ and HI values exceeded the threshold of 1. The results indicated the highest ADD values among the 0–9 age group, with inhalation exposure registering the highest ADD across all exposure routes. However, no significant health risks were observed, with both HQ and HI values not exceeding 1. This aggregate risk assessment approach is proposed as an effective preliminary evaluation method for health impact assessments in areas affected by chemical accidents.Graphical