Multi-Constrained Graph Pattern Matching (MC-GPM) aims to match a pattern graph with multiple attribute constraints on its nodes and edges, and has garnered significant interest in various fields, including social-based e-commerce and trust-based group discovery. However, the existing MC-GPM methods do not consider situations where the number of each node in the pattern graph needs to be fixed, such as finding experts group with expert quantities and relations specified. In this paper, a Multi-Constrained Strong Simulation with the Fixed Number of Nodes (MCSS-FNN) matching model is proposed, and then a Trust-oriented Optimal Multi-constrained Path (TOMP) matching algorithm is designed for solving it. Additionally, two heuristic optimization strategies are designed, one for combinatorial testing and the other for edge matching, to enhance the efficiency of the TOMP algorithm. Empirical experiments are conducted on four real social network datasets, and the results demonstrate the effectiveness and efficiency of the proposed algorithm and optimization strategies.
Read full abstract