Although quasi-two-dimensional (quasi-2D) perovskites are ideal material platforms for highly efficient linearly polarized electroluminescence owing to their anisotropic crystal structures, so far, there has been no practical implementation of these materials for the demonstration of linearly polarized perovskite light-emitting diodes (LP-PeLEDs). This scarcity is due to difficulty in orientation and phase distribution control of the quasi-2D perovskites while minimizing the defects, all of which are required to manifest aligned transition dipole moments (TDMs). To achieve this multifaceted goal, herein, we introduce a synergistic strategy to quasi-2D perovskites by incorporating both a trimethylolpropane triacrylate anchoring layer and 18-Crown-6 molecular passivator into the film fabrication process. It is found that the interfacial anchoring layer guides the oriented growth of perovskites along the (110) plane, whereas the molecular passivator reduces the number of defects and homogenizes the crystal phase. As a result, a quasi-2D perovskite film with macroscopically aligned TDM that renders high radiative recombination and the degree of linear polarization (DoLP) is constructed. This "coherence-programmed emission layer" demonstrates highly efficient LP-PeLEDs, not only achieving a maximum external quantum efficiency of ∼23.7%, a brightness of ∼36,142 cd/m2, and a DoLP of ∼38%, but also significantly improving the signal-to-interference-and-noise ratio in a multi-cell visible light communication system.