Immune infiltration plays a pivotal role in the pathogenesis of mucosal damage in ulcerative colitis (UC). The objective of this study was to systematically analyze and identify genetic characteristics associated with immune infiltration in UC. Gene expression data from three independent datasets obtained from the Gene Expression Omnibus (GEO) were utilized. By employing the ssGSEA and CIBERSORT algorithms, we estimated the extent of immune cell infiltration in UC samples. Subsequently, Weighted Correlation Network Analysis (WGCNA) was performed to identify gene modules exhibiting significant associations with immune infiltration, and further identification of hub genes associated with immune infiltration was accomplished using least absolute shrinkage and selection operator (LASSO) regression analysis. The relationship between the identified hub genes and clinical information was subsequently investigated. Our findings revealed significant activation of both innate and adaptive immune cells in UC. Notably, the expression levels of CD44, IL1B, LYN, and ITGA5 displayed strong correlations with immune cell infiltration within the mucosa of UC patients. Immunohistochemical analysis confirmed the significant upregulation of CD44, LYN, and ITGA5 in UC samples, and their expression levels were found to be significantly associated with common inflammatory markers, including the systemic immune inflammation indices, C-reactive protein, and erythrocyte sedimentation rate. CD44, LYN, and ITGA5 are involved in the immune infiltration pathogenesis of UC and may be potential therapeutic targets for UC.
Read full abstract