To assess the impact of different B0 shimming algorithms on MRS. B0 field maps and single-voxel MR spectroscopy were acquired in the prefrontal cortex of five volunteers at 3 T using five different B0 shimming approaches. B0 shimming was achieved using Siemens' proprietary shim algorithm, in addition to the Pseudo-Inverse (PI), Quadratic Programming (QuadProg), Least Squares (LSq), and Gradient optimization (Grad) algorithms. The standard deviation of the shimmed B0 field, as well as the SNR and FWHM of the measured metabolites, was used to evaluate the performance of each B0 shimming algorithm. Compared to Siemens's shim, significant reductions (p < 0.01) in the standard deviation of the B0 field distribution within the MRS voxel were observed for the PI, QuadProg, and Grad algorithms (3.8 Hz, 7.3 Hz, and 3.9 Hz respectively, compared to 11.5 Hz for Siemens), but not for the LSq (12.9 Hz) algorithm. Moreover, significantly increased SNR and reduced FWHM for the N-acetylaspartate metabolite were consistent with the improvement in B0 homogeneity for the aforementioned shimming algorithms. Here, we demonstrate that the choice of B0 shimming algorithm can have a significant impact on the quality of MR spectra and that significant improvements in spectrum quality could be achieved by using alternatives to the default vendor approach.