Autophagy is essential for oocyte maturation and preimplantation embryo development. ATG4C, a member of the ATG4 family, plays a crucial role in the autophagy process. The effect of ATG4C on the early embryonic development in pig has not been studied. In this study, the expression patterns of ATG4C were explored using qRT-PCR and immunofluorescence staining. Different concentrations of serum were added to in vitro maturation (IVM) medium to investigate its effects on oocyte maturation and embryonic development. Finally, the developmental potential of parthenogenetic embryos was detected by downregulating ATG4C in MII stage oocytes under 0 % serum condition. The results revealed that ATG4C was highly expressed in porcine oocytes matured in vitro and in parthenogenetic embryos. Compared with the 10 % serum group, the cumulus cell expansion, first polar body (PB1) extrusion rate, and subsequent developmental competence of embryos were reduced in the 0 % and 5 % serum groups. The mRNA levels of LC3, ATG5, BECLIN1, TFAM, PGC1α, and PINK1 were significantly increased (P < 0.05) in the 0 % serum group. ATG4C was significantly upregulated in the embryos at the 1-cell, 2-cell, 8-cell, and 16-cell stages in the 0 % serum group (P < 0.05). Compared with the negative control group, downregulation of ATG4C significantly decreased the 4-cell, 8-cell, and blastocyst rates (P < 0.05), and the expression of genes related to autophagy, mitochondria, and zygotic genome activation (ZGA) was significantly decreased (P < 0.05). The relative fluorescence intensity of LC3 and mitochondrial content in the ATG4C siRNA group was significantly reduced (P < 0.05). Collectively, the results indicate that ATG4C is highly expressed in porcine oocytes matured in vitro and in early embryos, and inhibition of ATG4C effects embryonic developmental competence by decreasing autophagy, mitochondrial content, and ZGA under serum-free condition.