Notoginseng saponins (NS) are the active ingredients in Panax notoginseng (Burk.) F.H. Chen (PN). NS can be transformed depending on how the extract is processed. Fermentation has been shown to produce secondary ginsenosides with increased bioavailability. However, the therapeutic effect of fermented NS (FNS) requires further study. The present study compared the compositions and activities of FNS and NS in blood deficiency rats, which resembles the symptoms of anemia in modern medicine, induced by acetylphenylhydrazine and cyclophosphamide. A total of 32 rats were randomly divided into control, model, FNS and NS groups. A blood deficiency model was established and then treatment was orally administered for 21 days. The results of component analysis indicated that some saponins transformed during the fermentation process resulting in a decrease of notoginsenoside R1, and ginsenosides Rg1, Rb1 and Re, and an increase in ginsenosides Rd, Rh2, compound K, protopanaxadiol and protopanaxatriol. The animal results showed that both FNS and NS increased the number of white blood cells (WBCs), red blood cells, hemoglobin, platelets and reticulocytes, and the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoietin (EPO) and thrombopoietin (TPO), decreased the G0/G1 phase and increased G2/M phase, and decreased the apoptosis rate of bone marrow (BM) cells, which suggested a contribution to the recovery of hematopoietic function of the BM cells. FNS and NS increased the protein expression levels of the cytokines IL-4, IL-10, IL-12, IL-13, TGF-β, IL-6, IFN-γ and TNF-α, and the mRNA expression levels of transcription factors GATA binding protein 3 and T-box expressed in T cell (T-bet). FNS and NS treatment also increased the number of CD4+ T cells, and decreased the enlargement of the rat spleen and thymus atrophy, which indicated a protective effect on the organs of the immune system. The results of the present study demonstrated that compared with NS, FNS showed an improved ability to increase the levels of WBCs, lymphocytes, GM-CSF, EPO, TPO, aspartate aminotransferase, IL-10, IL-12, IL-13 and TNF-α, and the mRNA expression levels of T-bet, and decrease alanine aminotransferase levels. The differences seen for FNS treatment could arise from their improved bioavailability compared with NS, due to the larger proportion of hydrophobic ginsenosides produced during fermentation.