In this investigation, we characterize the embryonic and adult actins and describe the embryonic expression of a muscle actin in the ascidian Styela. Two-dimensional polyacrylamide gel electrophoresis showed that embryos, tadpole larvae, and adult organs contain three major and two minor isoforms of actin. Two of the major isoforms, which are present in the mantle, branchial sac, alimentary tract, and gonads of adults and in eggs, embryos, and heads and tails of tadpoles, are likely to be cytoplasmic actins. The third major isoform, which was enriched in the mantle and branchial sac of adults and localized primarily in the tails of tadpoles, is a muscle actin. The muscle actin isoform was not detected in eggs and early embryos. Radioactivity incorporation studies showed that the cytoplasmic actins were synthesized throughout early development, but muscle actin synthesis was first detected between the 16- and 64-cell stages, 2–3 hr after fertilization. Two lines of evidence indicate that embryonic muscle actin synthesis is directed in part by maternal mRNA. First, poly(A) + RNA isolated from unfertilized eggs directed the synthesis of muscle actin in an mRNA-dependent reticulocyte lysate. Second, muscle actin was synthesized in anucleate egg fragments. Arguments are also presented that muscle actin synthesis is not directed exclusively by maternal mRNA. It is concluded that embryonic and adult Styela exhibit actin heterogeneity, that one of the actin isoforms is a muscle actin, and that the muscle actin is synthesized during embryogenesis under the direction of maternal and zygotic mRNA.
Read full abstract