BackgroundEarly neurorehabilitation can enhance neurocognitive outcomes in very preterm infants (<32 weeks), and conventional magnetic resonance imaging (MRI) is commonly used to assess neonatal brain injury; however, the predictive value for neurodevelopmental delay is limited. Timely predictive quantitative biomarkers are needed to improve early identification and management of infants at risk of neurodevelopmental delay.ObjectiveTo evaluate the potential of quantitative synthetic MRI measurements at term-equivalent age as predictive biomarkers of neurodevelopmental impairment and establish practical cutoff values to guide clinical decision-making.Materials and methodsThis retrospective study included 93 very preterm infants who underwent synthetic MRI at term-equivalent age between January 2017 and September 2020. Clinical outcomes were assessed using the Bayley-III scale of infant development (mean age 2.1 years). The predictive value for impaired development was analyzed using receiver operating characteristic curves for synthetic MRI-based volumetry and T1 and T2 relaxation measurements.ResultsThe T1 relaxation time in the posterior limb of the internal capsule was a potent predictor of severe (sensitivity, 92%; specificity, 80%; area under the curve (AUC), 0.91) and mild or severe (AUC, 0.75) developmental impairment. T2 relaxation time in the posterior limb of the internal capsule was a significant predictor of severe impairment (AUC, 0.76), whereas the brain parenchymal volume was a significant predictor of severe (AUC, 0.72) and mild or severe impairment (AUC, 0.71) outperforming the reported qualitative MRI scores (AUC, 0.66).ConclusionThe proposed cutoff values for T1 relaxation time in the posterior limb of the internal capsule and for total brain volume measurements, derived from synthetic MRI, show promise as predictors of both mild and severe neurodevelopmental impairment in very preterm infants.Graphical