Debondable pressure-sensitive adhesives (PSAs) promise access to recyclability in microelectronics in the transition toward a circular economy. Two PSAs were synthesized from a tetravalent thiol star-polyester forming thiol-catechol-connectivities (TCC) with either biorelated DiDopa-bisquinone (BY*Q) or fossil-based bisquinone A (BQA). The PSAs enable debonding by oxidation of TCC-catechols to quinones. The extent of debonding efficiency depends on the interaction modes, which are determined by the chemical structure differences of both TCC-motifs. BY*Q-TCC-PSA debonds with exceptional loss of 99% of its approx. 2 MPa shear strength. For BQA-TCC-PSA, a debonding efficiency of only approx. 60% was found, irrespective of its initial shear strength, which could be tuned up to approx. 7 MPa. The efficiency of debonding for BY*Q-TCC-PSA after TCC-oxidation is linked to the loss of synergistic interactions without strongly affecting the bulk glue properties, outperforming the purely catechol-based BQA-analogue.
Read full abstract