Background: Patients with chronic ankle instability (CAI) demonstrated altered movement patterns during unanticipated landing compared to coper patients. Understanding the effects of kinematics, dynamics and energetics on individual movement patterns during landing could enhance motor control strategies for patients with ankle sprains while avoiding the transition of coper patients to CAI patients. Therefore, the purpose of this study was to investigate the differences in movement patterns of coper patients compared to CAI patients during the unanticipated landings; Methods: Fifteen individuals with CAI (age: 22.8±1.4 years; height: 180.1±4.2 cm; weight: 81.5±5.8 kg) and fifteen copers (age: 23.1±1.2 years; height: 179.8±4.4 cm, weight: 80.4±6.2 kg) participated in an unanticipated landing task, during which three-dimensional motion capture, ground reaction force (GRF), and muscle activation data were collected. A musculoskeletal model was used to estimate muscle force and joint power among these two groups. Joint power was calculated as the product of angular velocity in the sagittal plane and joint moment data, reflecting the energy transfer at the ankle, knee, and hip joints. Furthermore, energy dissipation and generation within these joints were determined by integrating specific regions of the joint power curve; Results: Individuals with CAI demonstrated a greater muscle force in the vastus lateralis compared copers during the unanticipated landing task, while copers exhibited higher peak muscle forces in the medial gastrocnemius (p=0.007), lateral gastrocnemius (p=0.002), soleus (p=0.004). The muscle activation patterns of CAI patients also differ from those of coper patients. Compared to copers, CAI patients exhibit earlier activation of the rectus femoris (p<0.001) and lateral gastrocnemius muscles (p=0.042). Conversely, copers demonstrate earlier activation of the soleus (p=0.004) and medial gastrocnemius (p=0.003) muscles. In addition, joint power in CAI individuals during unanticipated landing shifted from the ankle to the knee and hip (p<0.001); Conclusions: These findings suggest that individuals with CAI exhibit a change in motion control strategy during unanticipated landing tasks. The variations in peak forces and the ability of proximal muscles to generate force might enable them to offset the deficits noted in distal muscles. Energy redistribution issues observed in CAI patients may help to prevent the transition of coper patients towards developing CAI patients.
Read full abstract