Seasonal vertical ground movement (SVGM), which refers to the periodic vertical displacement of the Earth’s surface, has significant implications for infrastructure stability, agricultural productivity, and environmental sustainability. Understanding how SVGM correlates with climatic conditions—such as temperatures and drought—is essential in managing risks posed by land subsidence or uplift, particularly in regions prone to extreme weather events and climate variability. The correlation of periodic SVGM with climatic data from Earth observation was investigated in this work. The European Ground Motion Service (EGMS) vertical ground movement measurements, provided from 2018 to 2022, were compared with temperature and precipitation data from MODIS and CHIRP datasets, respectively. Measurement points (MP) from the EGMS over Italy provided a value for ground vertical movement approximately every 6 days. The precipitation and temperature datasets were processed to provide drought code (DC) maps calculated ad hoc for this study at a 1 km spatial resolution and daily temporal resolution. Seasonal patterns were analyzed to assess correlations with Spearman’s rank correlation coefficient (ρ) between this measure and the DCs from the Copernicus Emergency Management Service (DCCEMS), from MODIS + CHIRP (DC1km) and from the temperature. The results over the considered area (Italy) showed that 0.46% of all MPs (32,826 MPs out of 7,193,676 MPs) had a ρ greater than 0.7; 12,142 of these had a positive correlation, and 20,684 had a negative correlation. DC1km was the climatic factor that provided the highest number of correlated MPs, roughly giving +59% more correlated MPs than DCCEMS and +300% than the temperature data. If a ρ greater than 0.8 was considered, the number of MPs dropped by a factor of 10: from 12,142 to 1275 for positive correlations and from 20,684 to 2594 for negative correlations between the DC1km values and SVGM measurements. Correlations that lagged in time resulted in most of the correlated MPs being within a window of ±6 days (a single satellite overpass time). Because the DC and temperature are strongly co-linear, further analysis to assess which was superior in explaining the seasonality of the MPs was carried out, resulting in DC1km significantly explaining more variance in the SVGM than the temperature for the inversely correlated points rather than the directly correlated points. The spatial distribution of the correlated MPs showed that they were unevenly distributed in clusters across the Italian territory. This work will lead to further investigation both at a local scale and at a pan-European scale. An interactive WebGIS application that is open to the public is available for data consultation. This article is a revised and expanded version of a paper entitled “Detection and correlation analysis of seasonal vertical ground movement measured from SAR and drought condition” which was accepted and presented at the ISPRS Mid-Term Symposium, Belem, Brasil, 8–12 November 2024. Data are shared in a public repository for the replication of the method.