Although ethephon is commonly used as a plant growth regulator during commercial production of horticultural crops, information on its movement within plants is limited. In this study, we developed a method to detect ethephon in plant tissues, and determined ethephon localization and movement using tomato (Solanum lycopersicum L.) as a model system. Tissues were ground in an acidic buffer that preserved ethephon intact. Ethylene was released from the extracts by adding sodium hydroxide and was determined subsequently by gas chromatography. Ethephon was detected in leaves within 1 hour of application to peat-based root zones and within 10 minutes in hydroponics. In a pulse–chase experiment, ethephon levels increased initially, then decreased after the plants were returned to ethephon-free solutions. Ethephon was present in directly collected xylem fluid; fluid collected from petiole stumps (after leaf blade excision) had similar ethephon levels between the different petioles. Stem girdling had no effect on ethephon accumulation in leaves. Together, these data indicate ethephon is readily mobile in the xylem stream and provides insight into the commercial use of ethephon as a root zone-applied growth regulator.
Read full abstract