Nosocomial infections or healthcare-associated infections, normally develops after the healthcare treatment in the hospital. Most of them are caused by infected medical devices. Plastics are the most common materials for manufacturing these devices because of their good processability, sterilization efficacy, ease of handling and harmlessness, however, it usually do not display antimicrobial properties. Here, in order to infer antimicrobial activity to poly(lactic acid), it was modified by maleation, followed by l-lysine grafting to its structure. The chemical modifications were confirmed by FTIR and 1H NMR analysis, indicating the success of the reactions. The antimicrobial activity was tested using Escherichia coli and Staphylococcus aureus and the results showed that the sample was capable of inhibiting about 99 % of the S. aureus growth by contact. The samples cytotoxicity was also tested using the L929 mouse cells and the results indicated no cytotoxic effect. These results indicated the sample antimicrobial potential, without affect the normal eukaryotic cells. In addition, the processability of the modified PLA (PLA-g-Lys) was improved without compromising its mechanical properties, as shown by thermal analysis and tensile tests. Thus, this novel PLA derivative can be seen as a promising material for future applications in the manufacturing of biomedical devices.
Read full abstract