An overall and marked serotonin (5-HT) depletion of the brain was found to facilitate initiation of mouse-killing behavior in the rat, whereas more selective 5-HT depletions within forebrain structures such as the septum, hippocampus, cingular cortex and amygdala, did not have such an effect. In order to further investigate the topography of the 5-HT pathways and terminals thought to be involved in an inhibitory control over this behavior, localized lesions of the serotonergic system(s) were performed by means of bilateral 5,7-dihydroxytryptamine (5,7-DHT) injections (5 μg/μl) into the hypothalamus in naive rats. 5,7-DHT injections into the medial hypothalamus did not affect the initiation of mouse-killing behavior, whereas the reflexive startle responses to air puffs were increased. The animals' open-field behavior remained unchanged. Forebrain 5-HT content was reduced by 50% in this group. 5,7-DHT injections into the lateral hypothalamus increased the proportion of killers to 46% as compared to 10% in the control group, in spite of a reduced activity in the open-field and unchanged startle responses. Forebrain 5-HT content was reduced by 88%. As the lateral hypothalamus contains afferents from both the dorsal and the median raphe nuclei, it is likely that 5-HT terminals modulate some hypothalamic mechanism involved in the control of mouse-killing behavior.