Abstract This paper describes qualitative features of the generation of jetlike concentrated circulations, wakes, and blocks by simple mountainlike orography, both from idealized laboratory experiments and shallow-water numerical simulations on a sphere. The experiments are unstratified with barotropic lee Rossby waves, and jets induced by mountain orography. A persistent pattern of lee jet formation and lee cyclogenesis owes its origins to arrested topographic Rossby waves above the mountain and potential vorticity (PV) advection through them. The wake jet occurs on the equatorward, eastern flank of the topography. A strong upstream blocking of the westerly flow occurs in a Lighthill mode of long Rossby wave propagation, which depends on βa2/U, the ratio of Rossby wave speed based on the scale of the mountain, to zonal advection speed, U (β is the meridional potential vorticity gradient, f is the Coriolis frequency, and a is the diameter of the mountain). Mountains wider (north–south) than the east–west length scale of stationary Rossby waves will tend to block the oncoming westerly flow. These blocks are essentially β plumes, which are illustrated by their linear Green function. For large βa2/U, upwind blocking is strong; the mountain wake can be unstable, filling the fluid with transient Rossby waves as in the numerical simulations of Polvani et al. For small values, βa2/U ≪ 1 classic lee Rossby waves with large wavelength compared to the mountain diameter are the dominant process. The mountain height, δh, relative to the mean fluid depth, H, affects these transitions as well. Simple lee Rossby waves occur only for such small heights, δh/h ≪ aβ/f, that the f/h contours are not greatly distorted by the mountain. Nongeostrophic dynamics are seen in inertial waves generated by geostrophic shear, and ducted by it, and also in a texture of finescale, inadvertent convection. Weakly damped circulations induced in a shallow-water numerical model on a sphere by a lone mountain in an initially simple westerly wind are also described. Here, with βa2/U ∼1, potential vorticity stirring and transient Rossby waves dominate, and drive zonal flow acceleration. Low-latitude critical layers, when present, exert strong control on the high-latitude waves, and with no restorative damping of the mean zonal flow, they migrate poleward toward the source of waves. While these experiments with homogeneous fluid are very simplified, the baroclinic atmosphere and ocean have many tall or equivalent barotropic eddy structures owing to the barotropization process of geostrophic turbulence.