In this paper, we deal with the following fractional p&q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$p\\&q$\\end{document}-Laplacian problem: {(−Δ)psu+(−Δ)qsu=λa(x)|u|θ−2u+μb(x)|u|r−2uinΩ,u(x)=0inRN∖Ω,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left \\{ \ extstyle\\begin{array}{l@{\\quad }l} (-\\Delta )_{p}^{s}u +(-\\Delta )_{q}^{s}u =\\lambda a(x)|u|^{\ heta -2}u+ \\mu b(x)|u|^{r-2}u&\ ext{in}\\;\\ \\Omega , \\\\ u(x)=0 &\ ext{in}\\;\\ \\mathbb{R}^{N}\\setminus \\Omega , \\end{array}\\displaystyle \\right . $$\\end{document} where Ω⊂RN\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Omega \\subset \\mathbb{R}^{N}$\\end{document} is a bounded domain with smooth boundary, s∈(0,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$s\\in (0,1)$\\end{document}, (−Δ)ms\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(-\\Delta )_{m}^{s}$\\end{document}(m∈{p,q})\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(m\\in \\{p,q\\})$\\end{document} is the fractional m-Laplacian operator, p,q,r,θ∈(1,ps∗]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$p,q,r,\ heta \\in (1,p_{s}^{*}]$\\end{document}, ps∗=NpN−sp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$p_{s}^{*}=\\frac{Np}{N-sp}$\\end{document}, λ,μ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda , \\mu >0$\\end{document}, and the weights a(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$a(x)$\\end{document} and b(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$b(x)$\\end{document} are possibly sign changing. Using the concentration compactness principle for fractional Sobolev spaces and the Ekeland variational principle, we prove that the problem admits a nonnegative solution for the critical case r=ps∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$r=p_{s}^{*}$\\end{document}. Moreover, for the subcritical case r<ps∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$r< p_{s}^{*}$\\end{document}, we obtain two existence results by applying the Ekeland variational principle and the mountain pass theorem.