Naringenin (4,5,7-trihydroxyflavone, NAR) is an effective active ingredient in Rhizoma Drynariae, which has many biological functions, encompassing anti-inflammatory and -oxidant functions. Prior research has shown that NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasomes possessed a significant contribution to osteoporosis. However, the NAR impact on bone loss caused by microgravity remains unclear. Classical microgravity simulation methods were used to induce simulated microgravity (SMG) in mice and cells. Microcomputed tomography, immunohistochemical examination, and hematoxylin and eosin staining were implemented to ascertain alterations in bone microstructure and morphology in mice subsequent to NAR gavage. Cellular investigations were implemented encompassing quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence labeling to investigate the molecular mechanism behind NAR resistance to microgravity-induced bone loss. Our research has shown that NAR can significantly enhance the SMG-stimulated alterations in bone microstructure and morphology in mice, mainly by increasing the trabecular thickness, bone volume fraction, and trabecular number while increasing the bone trabecula number. Cell experiments also showed that SMG caused the activation of inflammatory corpuscles of NLRP3 and induced pyroptosis simultaneously, which can be confirmed by the upregulation of protein and mRNA expression levels such as those of NLRP3, cleaved caspase-1, gasdermin D, and apoptosis-associated speck-like protein. The occurrence of pyroptosis further led to the disorder of osteogenic differentiation, which showed that the osteopontin, Runt-related transcription factor 2, bone morphogenetic protein 2, and alkaline phosphatase expression levels were decreased. The intervention of NAR can activate the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, reverse this phenomenon via controlling the reactive oxygen species generation in cells and correcting mitochondrial malfunction, weaken the pyroptosis of osteoblasts (OBs), and promote osteogenic differentiation. In summary, NAR could hinder the pyroptosis of OBs caused by SMG and promote osteogenic differentiation via activating the Nrf2/HO-1 pathway. This provides a unique view for inhibiting bone loss under weightlessness and confirms the NAR capacity in treating microgravity-stimulated bone loss, giving new ideas and methods for future space medicine development.
Read full abstract