In cyclic rats, apoptosis of luteal cells during structural luteolysis occurs cyclically at the transition from pro-oestrus to oestrus in response to the preovulatory prolactin surge. This finding indicates that cyclic changes in apoptosis during luteolysis are dependent on prolactin surge cyclicity. In this study, the effects of prolactin on structural luteolysis were studied under different experimental conditions in relation to the phase of the oestrous cycle. In rats treated with prolactin at metoestrus and dioestrus, apoptosis did not occur in regressing corpora lutea, whereas in rats treated with prolactin on the morning of pro-oestrus, a 12.3-fold and 3.4-fold increase were observed in the number of apoptotic cells in regressing corpora lutea of the current and previous oestrous cycles, respectively. However, when the preovulatory prolactin surge and hence the subsequent apoptotic burst were blocked, prolactin treatment at the dioestrus phase induced a 13-fold increase in the number of apoptotic cells and significant changes in the volume of the corpus luteum (38% decrease) and the number of steroidogenic cells per corpus luteum (70% decrease). The results of this study indicate that the responsiveness of the regressing corpus luteum to the pro-apoptotic effects of prolactin are dependent on the phase of the oestrous cycle and on the presence or absence of an apoptotic burst in response to the preovulatory prolactin surge on the evening of pro-oestrus. Steroidogenic cells surviving to the apoptotic burst during the transition from pro-oestrus to oestrus became refractory to the lytic effect of prolactin. Furthermore, these cells also responded to the luteotrophic effects of prolactin, reaching full morphological luteinization, as indicated by the rescue of regressing cyclic corpora lutea during pregnancy.
Read full abstract