The proposed multiple scaled contaminated asymmetric Laplace (MSCAL) distribution is an extension of the multivariate asymmetric Laplace distribution to allow for a different excess kurtosis on each dimension and for more flexible shapes of the hyper-contours. These peculiarities are obtained by working on the principal component (PC) space. The structure of the MSCAL distribution has the further advantage of allowing for automatic PC-wise outlier detection – i.e., detection of outliers separately on each PC – when convenient constraints on the parameters are imposed. The MSCAL is fitted using a Monte Carlo expectation-maximization (MCEM) algorithm that uses a Monte Carlo method to estimate the orthogonal matrix of eigenvectors. A simulation study is used to assess the proposed MCEM in terms of computational efficiency and parameter recovery. In a real data application, the MSCAL is fitted to a real data set containing the anthropometric measurements of monozygotic/dizygotic twins. Both a skewed bivariate subset of the full data, perturbed by some outlying points, and the full data are considered.