This study aimed to evaluate the fatigue performance of simplified ceramic restorations (leucite-reinforced glass ceramic) adhesively cemented onto substrates of different resin composites. Three options from the same commercial line were selected (Tetric N-Line, Ivoclar), classified as Conventional (CRC), Bulk-fill (BRC) and Flowable (FRC), which were used to make discs using a cylindrical metallic device (n = 19; Ø = 10 mm, thickness = 2.0 mm). A total of 57 discs (Ø = 10 mm, thickness = 1.0 mm) were made from CAD/CAM prefabricated blocks of a leucite reinforced glass-ceramic (Empress CAD, Ivoclar) to simulate a monolithic restoration, then were randomly distributed to be bonded on 19 discs of each three different resin composite substrates (CRC; BRC; or FRC) with a dual resin cement (Multilink N; Ivoclar). The samples were subjected to a compression test with a hemispherical stainless-steel piston (Ø = 40 mm) at a monotonic regimen (n = 4; 1 mm/min loading rate and 500 kgf loading cell until fracture). The cyclic fatigue test was performed underwater at a frequency of 20 Hz (n = 15). The first step was applied using 200N for 5000 cycles, followed by increments of 50N at each step of 10,000 until failure. The outcome considered for both tests was the occurrence of radial crack. Specific statistical tests (α = 0.05) were performed for monotonic (One-way ANOVA; Tukey's test) and fatigue data (Kaplan-Meier test; Log-rank test). Fractography of fractured samples were also performed. The FRC group had the lowest failure load in both test regimes (p < 0.05; monotonic: 726.64N; fatigue: 716.67N). There were no differences between the CRC and BRC groups (p > 0.05; monotonic: 989.30 and 990.11N; fatigue: 810.00 and 833.33N, respectively). The same result was obtained considering cycles for fatigue failure (FRC < CRC=BRC). Leucite glass-ceramic bonded to substrates made of flowable resin composite behaves worse mechanically than bonding to conventional or bulk-fill resin composite substrates.
Read full abstract