The self-assembled hierarchical micro-nanostructures with geometric complexity and/or constituent diversity are becoming a promising class of candidates for the next generation nanotechnology. Different from conventional vapor-liquid-solid (VLS) eutectic liquid droplets for one-dimensional(1D) nanowires, the Zn-Bi VLS monotectic liquid droplets are employed to build 1D, 2D and 3D ZnO into 3D hierarchical micro-nanostructures. As-obtained micro-nanostructures are well defined self-assembly and have not yet been observed in the conventional eutectic alloys. The synergy of monotectic droplets and nonthermal equilibrium is responsible for the evolution of ZnO hierarchical micro-nanostructures. Raman spectra show that E2H and E1L modes are shifted slightly towards the high-wavenumber side by an amount of 3.7 and 2 cm−1 as compared with undoped ZnO nanowires and an additional peak at 519.5 cm−1 is associated with Bi38OZn60. The results manifest that 3D ZnO micro-nanoarchitectures possess a bulk phonon structure. The monotectic liquid droplet route presented in this paper may offer a new opportunity to the fabrication of hierarchical nanostructures for realistic technology platforms with multifunctional coupling and interplay.