In the present work, heat transfer and fluid flow and their effects on entropy generation in a realistic catalytic converter of a Lada Niva 21214 vehicle are studied using large eddy simulation. At first, the pressure drop over the catalytic converter is measured for dry air at constant temperature ( K), different volumetric flow rates, and extrapolated to large volumetric flow rates for dry air ( K) and for the exhaust gas under realistic engine conditions ( K) using the Darcy–Forchheimer relation. Then, coupled heat and fluid flow phenomena inside the catalytic converter are analyzed for nonreacting isothermal conditions and nonreacting conditions with conjugate heat transfer by using the large-eddy simulation. The predicted pressure drop agrees well with the measured and extrapolated data. Based on the obtained numerical results, the characteristic flow features are identified, namely: the impinging flow with stagnation, recirculation, flow separation and laminarization within the fine ducts of the monolith, which depends on the heat transfer through temperature-dependent thermophysical properties of exhaust gas. Moreover, due to high-velocity gradients at the wall of the narrow ducts in the monolith, entropy production by viscous dissipation is observed predominantly in the monolith region. In contrast, entropy production due to heat transport is relatively small in the monolith region, while it overwhelms viscous dissipation effects in the pipe regions.