Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the treatment benefits of cervical cancer patients. MCPIP1 (monocyte chemoattractant protein-induced protein 1) is a kind of endonuclease with a CCCH zinc finger domain and a PilT-N-terminal (PIN) domain, and its function in cervical cancer is unknown. We found that MCPIP1 inhibits cell proliferation and promotes cell apoptosis of cervical cancer. Additionally, MCPIP1 suppresses mRNA and protein expression of the apoptotic inhibitor XIAP by decreasing its mRNA stability. Mechanically, MCPIP1 binds to the XIAP mRNA via its CCCH zinc finger domain and degrades the XIAP mRNA via the endonuclease activity coming from its PIN domain. Our study clarifies that MCPIP1 promotes cervical cancer cell apoptosis by suppressing the expression of XIAP, thereby impeding cervical cancer progression. Moreover, targeted delivery of MCPIP1 with engineered Salmonella typhimurium leads to tumor growth retardation in the HeLa xenograft tumor model in mice. Therefore, our study may provide a theoretical basis for formulating clinical treatment strategies for cervical cancer.
Read full abstract