To explore the protective effect and mechanism of scutellarin (Scu) on sepsis associated-acute kidney injury (SA-AKI). (1) In vivo experiment: 36 male C57BL/6 mice were divided into normal saline (NS) control group, lipopolysaccharide (LPS) induced SA-AKI model group (LPS group), 20 mg/kg Scu control group (Scu 20 control group), and 5, 10, 20 mg/kg Scu pretreatment groups by random number table with 6 mice in each group. The SA-AKI model was reproduced by intraperitoneal injection of 10 mg/kg LPS. The NS control group was injected with NS intraperitoneally. The Scu pretreatment groups were intraperitoneally injected with different doses of Scu every day before LPS injection for 1 week. Scu 20 control group was injected with 20 mg/kg Scu for 1 week. After 24 hours of LPS treatment, mice in each group were sacrificed, kidney tissues were collected, and kidney injury was detected by hematoxylin-eosin (HE) staining. Western blotting was used to detect the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway related molecules, apoptosis-related proteins and cysteine-rich protein 61-connective tissue growth factor-nephroblastoma overexpressed gene 1 (CCN1). (2) In vitro experiment: human renal tubular epithelial cell line HK-2 was cultured in vitro and used for experiment when the cells fused to 80%. In the cells without LPS treatment and after 100 g/L LPS treatment, pcDNA3.1-CCN1 and small interfering RNA (siRNA) CCN1 sequence were transfected to overexpress and inhibit CCN1 expression, respectively, to observe whether CCN1 was involved in NF-κB signaling pathway activation and apoptosis. In addition, 100g/L LPS and 20 μmol/L Scu were added into HK-2 cells transfected with and without CCN1 siRNA to investigate the mechanism of protective effect of Scu on LPS-induced HK-2 cells injury. (1) The results of in vivo experiment: the renal function of SA-AKI mice induced by LPS was significantly decreased, and had kidney histological damage and severely damaged renal tubules. Scu could alleviate renal function and histological damage in a dose-dependent manner. Western blotting results showed Scu could reduce the protein expression of NF-κB signaling pathway related molecules and CCN1 in the renal tissue, and had a significant alleviating effect on apoptosis, indicating that CCN1 was involved in NF-κB signaling pathway activation and apoptosis. (2) The results of in vitro experiment: in HK-2 cells not treated with LPS, CCN1 overexpression had no effect on apoptosis related protein and pro-inflammatory factors of NF-κB signaling pathway. In HK-2 cells treated with LPS, overexpression of CCN1 significantly inhibited the mRNA expressions of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), with significant differences as compared with cells stimulated only by LPS [IL-1β mRNA (2-ΔΔCT): 3.20±0.57 vs. 4.88±0.69, TNF-α mRNA (2-ΔΔCT): 2.99±0.44 vs. 5.00±0.81, MCP-1 mRNA (2-ΔΔCT): 2.81±0.50 vs. 5.41±0.75, all P < 0.05], and the apoptosis-related protein was significantly down-regulated. However, when siRNA was used to inhibit the expression of CCN1, the mRNA expressions of pro-inflammatory factors were significantly increased as compared with cells stimulated only by LPS [IL-1β mRNA (2-ΔΔCT): 6.01±1.13 vs. 4.88±0.69, TNF-α mRNA (2-ΔΔCT): 5.15±0.86 vs. 5.00±0.81, all P < 0.05], and apoptosis-related protein was significantly up-regulated. In the LPS-induced HK-2 cells, the mRNA expressions of pro-inflammatory factors were significantly down-regulated after Scu treatment as compared with cells stimulated only by LPS [IL-1β mRNA(2-ΔΔCT): 2.55±0.50 vs. 6.15±1.04, TNF-α mRNA (2-ΔΔCT): 2.58±0.40 vs. 3.95±0.52, MCP-1 mRNA (2-ΔΔCT): 2.64±0.44 vs. 6.21±0.96, all P < 0.05], and apoptosis-related protein was also significantly reduced. When the expression of CCN1 was inhibited by siRNA, the protective effect of Scu on cells was weakened, which showed that the mRNA expressions of pro-inflammatory factors in cells was significantly up-regulated compared with the cells without inhibition of CCN1 expression [IL-1β mRNA (2-ΔΔCT): 5.34±0.76 vs. 2.55±0.50, TNF-α mRNA (2-ΔΔCT): 3.66±0.54 vs. 2.58±0.40, MCP-1 mRNA (2-ΔΔCT): 5.15±0.79 vs. 2.64±0.44, all P < 0.05], and the expression of apoptosis related protein was also significantly up-regulated. Scu could protect the renal function in SA-AKI mice, and the protective effect is associated with NF-κB signaling pathway and CCN1. Thus, Scu could alleviate LPS-induced kidney injury by regulating the NF-κB signaling pathway.
Read full abstract