The estimation of Unmanned Aerial Vehicle (UAV) poses using visual information is essential in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose a UAV visual navigation algorithm based on visual-geography Bundle Adjustment (BA) to address the challenge of missing geolocation information in monocular visual navigation. This algorithm presents an effective approach to UAV navigation and positioning. Initially, Visual Odometry (VO) was employed for tracking the UAV’s motion and extracting keyframes. Subsequently, a geolocation method based on heterogeneous image matching was utilized to calculate the geographic pose of the UAV. Additionally, we introduce a tightly coupled information fusion method based on visual-geography optimization, which provides a geographic initializer and enables real-time estimation of the UAV’s geographical pose. Finally, the algorithm dynamically adjusts the weight of geographic information to improve optimization accuracy. The proposed method is extensively evaluated in both simulated and real-world environments, and the results demonstrate that our proposed approach can accurately and in real-time estimate the geographic pose of the UAV in a GNSS-denied environment. Specifically, our proposed approach achieves a root-mean-square error (RMSE) and mean positioning accuracy of less than 13 m.
Read full abstract