In several complex crystals, like Al13Co4, metadislocations have been shown to facilitate plastic flow at high temperature. Consistent deformation has been revealed in small scale testing down to room temperature, but until now, no high resolution studies of the underlying dislocation core structures have been conducted to confirm the presence of metadislocations where diffusion slows down towards room temperature. Here, we used microcompression and high resolution TEM to reveal that room temperature plasticity in the monoclinic Al13Co4 phase does indeed occur by motion of metadislocations and that these are closely related to those reported previously in the orthorhombic Al13Co4 phase.
Read full abstract