Molluscan smooth muscles, such as the bivalve adductor muscles and the mussel anterior byssus retractor muscles (ABRM), exhibit a unique contraction called “catch”. Catch contraction is regulated through twitchin phosphorylation and dephosphorylation. Twitchin from the ABRM of the Mediterranean mussel, Mytilus galloprovincialis, is phosphorylated by cAMP-dependent protein kinase (PKA), and PKA phosphorylation sites are located in both the N- and C-terminal regions of the twitchin molecule. The D2 site, which is adjacently located to the C-terminus, participates in forming a myosin, actin, and twitchin complex that is thought to contribute towards the maintenance of tension in the catch state. In contrast, although it has been reported to interact with thin-filaments, the molecular function of the region including the D1 site has remained largely unstudied. Three additional PKA consensus sequences were identified near the D1 site; however, it was not known if these sites could be directly phosphorylated by PKA. Here, we performed phosphorylation assays to identify phosphorylation sites near the D1 site using recombinant protein variants (TWD1-SSSS, TWD1-AAAS, TWD1-AASA, TWD1-ASAA, TWD1-SAAA, and TWD1-AAAA). All variants, except TWD1-AAAA (where all phosphorylatable serine residues were replaced by alanines), were phosphorylated by PKA. The four phosphorylation sites were named D1-1, D1-2, D1-3, and D1-4 (the originally identified D1) in order from the N-terminus. Phosphorylation assays using a 1/12.5 weight ratio of PKA to each TWD1 variant revealed that D1-4 was the most rapidly phosphorylated, closely followed by D1-1. However, D1-2 and D1-3 were phosphorylated at a lower level under equivalent conditions and were not phosphorylated when PKA was incubated with each TWD1 variant at a 1/100 weight ratio. Furthermore, we observed that TWD1-SSSS was phosphorylated in a stepwise fashion. These findings contribute towards the elucidation of the function of the twitchin D1 region in the regulatory system of catch contraction.
Read full abstract