The P2X7 receptor [P2X7R or P2RX7 in National Center for Biotechnology Information (NCBI) gene nomenclature] is a member of the P2X receptor (P2XR) subfamily of P2 receptors (P2Rs). The P2X7R is an extracellular ATP-gated ion channel with peculiar permeability properties expressed by most cell types, mainly in the immune system, where it has a leading role in cytokine release, oxygen radical generation, T lymphocyte differentiation and proliferation. A role in cancer cell growth and tumor progression has also been demonstrated. These features make the P2X7R an appealing target for drug development in inflammation and cancer. The functional P2X7R, recently (partially) crystallized and 3-D solved, is formed by the assembly of three identical subunits (homotrimer). The P2X7R is preferentially permeable to small cations (Ca2+, Na+, K+), and in most (but not all) cell types also to large positively charged molecules of molecular mass up to 900Da. Permeability to negatively charged species of comparable molecular mass (e.g., Lucifer yellow) is debated. Several highly selective P2X7R pharmacological blockers have been developed over the years, thus providing powerful tools for P2X7R studies. Biophysical properties and coupling to several different physiological responses make the P2X7R amenable to investigation by electrophysiology and cell biology techniques, which allow its identification and characterization in many different cell types and tissues. A careful description of the physiological features of the P2X7R is a prerequisite for an effective therapeutic development. Here we describe the most common techniques to asses P2X7R functions, including patch-clamp, intracellular calcium measurements, and membrane permeabilization to large fluorescent dyes in a selection of different cell types. In addition, we also describe common toxicity assays used to verify the effects of P2X7R stimulation on cell viability.