The discovery of the self-assembly of cyanine dyes into J-aggregates had a major impact on the development of dye chemistry due to the emergence of new useful properties in the aggregated state. The unique optical features of these J-aggregates are narrowed, bathochromically shifted absorption bands with almost resonant fluorescence with an increased radiative rate that results from the coherently coupled molecular transition dipoles arranged in a slip-stacked fashion. Because of their desirable properties, J-aggregates gained popularity in the field of functional materials and enabled the efficient photosensitization of silver halide grains in color photography. However, despite a good theoretical understanding of structure-property relationships by the molecular exciton model, further examples of J-aggregates remained scarce for a long time as supramolecular designs to guide the formation of dye aggregates into the required slip-stacked arrangement were lacking.Drawing inspiration from the bacteriochlorophyll c self-organization found in the chlorosomal light-harvesting antennas of green sulfur bacteria, we envisioned the use of nature's supramolecular blueprint to develop J-aggregates of perylene bisimides (PBIs). This class of materials is applied in high-performance color pigments and as n-type organic semiconductors in transistors and solar cells. Combining outstanding photochemical and thermal stability, high tinctorial strength and excellent fluorescence, PBIs are therefore an ideal model system for the preparation of J-aggregates with a wide range of potential applications.In this Account, we elucidate how a combination of steric constraints and hydrogen bonding receptor sites can guide the self-assembly of PBI dyes into slip-stacked packing motifs with J-type exciton coupling. We will discuss the supramolecular polymerization of multiple hydrogen-bonded PBI strands in organic and aqueous media and how minor structural modifications in monomeric PBI molecules can be used to obtain near-infrared absorbing J-aggregates, organogels, or thermoresponsive hydrogels. Pushing the boundaries of self-assembly into the bulk, engineering of the substituents' steric requirements by a dendron-wedge approach afforded adjustable numbers of helical strands of PBI J-aggregates in the columnar liquid-crystalline state and the preparation of lamellar phases. To fully explore their potential, we have studied PBI J-aggregates in collaborative work with spectroscopists, physicists, and theoreticians. In this way, exciton migration over distances of up to 180 nm was shown, and insights into the influence of static disorder on the transport of excitation energy in PBI J-aggregates were derived. Furthermore, the application of PBI J-aggregates as functional materials was demonstrated in photonic microcavities, thin-film transistors, and organic solar cells.
Read full abstract