The high viscosity of heavy crude oil has been an obstacle to its safe production and economic transportation. In this work, a screened emulsified viscosity reducer system is conducted. Experimental results demonstrate that the most effective viscosity reducing agent comprises sodium oleate (NaOl) and cocamidopropyl betaine (CAB-35) in a ratio of 1:2, achieving a viscosity reduction rate of 94.65%. Additionally, the interfacial tension between oil and water decreases from 27 to 4 mN/m with 0.1 mass % TEOA and NaOH in a 1:1 ratio. The oil droplet size is uniformly distributed with D mean is 14 μm and D 50 is 11 μm. Droplets flocculate as the salinity increases to 0.2 mol/L, which corresponds to the apparent increase of viscosity. The adsorption of long alkyl chain lipophilic groups on surfactant molecules at the oil-water interface and the water film alters the wettability of pipe steel to water-wet, further enhancing the application of emulsification and viscosity reduction effects. The primary mechanism behind the viscosity reduction in emulsification is attributed to strong electrostatic interactions stemming from molecular electrostatic potential distributions.