IntroductionThe Molecular Adsorbent Recycling System (MARS) is used to treat patients with liver failure. Observational data suggest that citrate anticoagulation during MARS is feasible. Comparative studies on the optimal anticoagulation regimen during MARS are lacking. The aim of the current study was to evaluate two heparin-free anticoagulation regimens.MethodsWe performed a prospective randomized open-label crossover study of regional citrate anticoagulation against no anticoagulation. Ten patients (age 55 ± 11 years) with liver failure undergoing MARS treatment were included. The primary endpoint was completion of MARS sessions. Secondary endpoints included treatment efficacy and safety. Longevity of MARS treatment was plotted as a Kaplan-Meier estimate. Fisher's exact test was used for contingency table analysis.ResultsOf a total of 27 6-hour sessions, four sessions had to be terminated prematurely, three due to occlusive clotting of the extracorporeal circuit and one due to uncontrollable bleeding from the vascular access site. All four events occurred in the group without anticoagulation. Between group comparison demonstrated citrate anticoagulation to significantly increase the likelihood of completed MARS treatment (Fisher's exact test, P 0.04). This translates into higher bilirubin reduction ratios when citrate was applied (reduction ratio 0.25 vs. 0.15, P 0.02). Systemic ionized calcium concentrations were significantly reduced during citrate anticoagulation (P < 0.001) but remained within a safe range. We observed no major adverse events.ConclusionsRegional citrate anticoagulation in patients with liver failure is feasible. Citrate anticoagulation provides superior patency of the extracorporeal circuit. Avoidance of anticoagulation during MARS results in significant loss of treatment efficacy, due to treatment downtime. Additional studies are required to identify the optimal anticoagulation regimen for extracorporeal circulation in patients with liver failure.