Mechanisms of Cr(VI) reduction by Fe(II) modified zeolite (clinoptilolite/mordenite) and vermiculite were evaluated. Adsorbents were treated with Fe(SO4)·7H2O to saturate their exchange sites with Fe(II). However, this treatment decreased their CEC and pHPZC, probably due to the dealumination process. Vermiculite (V-Fe) adsorbed more Fe(II) (21.8mgg-1) than zeolite (Z-Fe) (15.1mgg-1). Z-Fe and V-Fe were used to remove Cr(VI) from solution in a batch test to evaluate the effect of contact time and the initial concentration of Cr(VI). The Cr(VI) was 100% reduced to Cr(III) by Z-Fe and V-Fe in solution at 18mg L-1 Cr(VI) after 1min. Considering that 3mol of Fe(II) are required to reduce 1mol of Cr(VI) (3Fe+2 + Cr+6 → 3Fe+3 + Cr+3), the iron content released from Z-Fe and V-Fe was sufficient to reduce 100% of the Cr(VI) in solutions up to 46.8mg L-1 Cr(VI) and about 90% (V-Fe) and 95% (Z-Fe) at 95.3mg L-1 Cr(VI). The Fe(II), Cr(III), Cr(VI), and K+ contents of the adsorbents and solutions after the batch tests indicated that the K+ ions from the [Formula: see text] solution were the main cation adsorbed by Z-Fe, while vermiculite did not absorb any of these cations. The H+ of the acidic solution (pH around 5) may have been adsorbed by V-Fe. The release of Fe(II) from Z-Fe and V-Fe involved cation exchange between K+ and H+ ions from solution, respectively. The reduction of Cr(VI) by Fe(II) resulted in the precipitation of Cr(III) and Fe(III) and a decrease in the pH of the solution to < 5. As acidity limits the precipitation of Cr(III) ions, they remained in solution and were not adsorbed by either adsorbent (since they prefer to adsorb K+ and H+). To avoid oxidation, Cr(III) can be removed by precipitation or the adsorption by untreated minerals.
Read full abstract