Quick and reliable measurement of wood chip moisture content is an everlasting problem for numerous forest-reliant industries such as biofuel, pulp and paper, and bio-refineries. Moisture content is a critical attribute of wood chips due to its direct relationship with the final product quality. Conventional techniques for determining moisture content, such as oven-drying, possess some drawbacks in terms of their time-consuming nature, potential sample damage, and lack of real-time feasibility. Furthermore, alternative techniques, including NIR spectroscopy, electrical capacitance, X-rays, and microwaves, have demonstrated potential; nevertheless, they are still constrained by issues related to portability, precision, and the expense of the required equipment. Hence, there is a need for a moisture content determination method that is instant, portable, non-destructive, inexpensive, and precise. This study explores the use of deep learning and machine vision to predict moisture content classes from RGB images of wood chips. A large-scale image dataset comprising 1,600 RGB images of wood chips has been collected and annotated with ground truth labels, utilizing the results of the oven-drying technique. Two high-performing neural networks, MoistNetLite and MoistNetMax, have been developed leveraging Neural Architecture Search (NAS) and hyperparameter optimization. The developed models are evaluated and compared with state-of-the-art deep learning models. Results demonstrate that MoistNetLite achieves 87% accuracy with minimal computational overhead, while MoistNetMax exhibits exceptional precision with a 91% accuracy in wood chip moisture content class prediction. With improved accuracy (9.6% improvement in accuracy by MoistNetMax compared to the best baseline model ResNet152V2) and faster prediction speed (MoistNetLite being twice as fast as MobileNet), our proposed MoistNet models hold great promise for the wood chip processing industry to be efficiently deployed on portable devices, such as smartphones.
Read full abstract