BackgroundThe modular structure can reflect the activity pattern of the brain, and exploring it may help us understand the pathogenesis of major depressive disorder (MDD). However, little is known about how to build a stable modular structure in MDD patients and how modules are separated and integrated. MethodWe used four independent resting state Electroencephalography (EEG) datasets. Different coupling methods, window lengths, and optimized community detection algorithms were used to find a reliable and robust modular structure, and the module differences of MDD were analyzed from the perspectives of global module attributes and local topology in multiple frequency bands. ResultsThe combination of the Phase Lag Index (PLI) and the Louvain algorithm can achieve better results and can achieve stability at smaller window lengths. Compared with Healthy Controls (HC), MDD had higher Modularity (Q) values and the number of modules in low-frequency bands. In addition, MDD showed significant structural changes in the frontal and parietal-occipital lobes, which were confirmed by further correlation analysis. ConclusionOur results provided a reliable validation of the modular structure construction method in MDD patients and contributed strong evidence for the changes in emotional cognition and visual system function in MDD patients from a new perspective. These results would afford valuable insights for further exploration of the pathogenesis of MDD.
Read full abstract