The quest for effective cancer treatment methodologies underpins numerous research endeavors. Despite the therapeutic efficacy of conventional chemotherapy against malignant tumors, tumor recurrence post-therapy remains a formidable challenge. Addressing this, we developed a dual drug delivery system, rooted in a modified metal-organic framework (MOF), specifically by substituting the metal nodes of Uio-66 with cerium to augment its anti-oxidative potential. This engineered system, pyrene-modified hyaluronic acid, functions as a linker, enabling the self-assembly and encapsulation of both the material and the therapeutic agents, and encompasses both doxorubicin and curcumin, aimed at targeting cancer cell eradication and tumorigenesis inhibition. This system demonstrated significant antioxidant capacity through free radical scavenging assays, positioning it as a potential agent in mitigating tumor recurrence. Enhanced anti-tumor activity was distinctly evidenced in human colon cancer cell lines. Additionally, in vitro drug release assessments revealed slow-release kinetics and acid-responsive traits, attributed to the incorporation of pyrenylated hyaluronic acid. Within the xenograft nude mouse model, this system contained a lower amount of doxorubicin, yet, exhibited tumor inhibition capability comparable to the free doxorubicin group. Moreover, it delivered anticancer efficiency under conditions of enhanced antioxidative capacity, underscoring its prospective utility in clinical cancer therapeutics. This dual drug delivery platform not only advances cancer treatment and prophylaxis but also extends novel insights into the therapeutic implications of simultaneous dual drug delivery systems.
Read full abstract