Primate vision is reported to detect snakes and emotional faces faster than many other tested stimuli. Because the amygdala has been implicated in avoidance and emotional behaviors to biologically relevant stimuli and has neural connections with subcortical nuclei involved with vision, amygdalar neurons would be sensitive to snakes and emotional faces. In this study, neuronal activity in the amygdala was recorded from Japanese macaques (Macaca fuscata) during discrimination of eight categories of visual stimuli including snakes, monkey faces, human faces, carnivores, raptors, non-predators, monkey hands, and simple figures. Of 527 amygdalar neurons, 95 responded to one or more stimuli. Response characteristics of the amygdalar neurons indicated that they were more sensitive to the snakes and emotional faces than other stimuli. Response magnitudes and latencies of amygdalar neurons to snakes and monkey faces were stronger and faster than those to the other categories of stimuli, respectively. Furthermore, response magnitudes to the low pass-filtered snake images were larger than those to scrambled snake images. Finally, analyses of population activity of amygdalar neurons suggest that snakes and emotional faces were represented separately from the other stimuli during the 50–100 ms period from stimulus onset, and neutral faces during the 100–150 ms period. These response characteristics indicate that the amygdala processes fast and coarse visual information from emotional faces and snakes (but not other predators of primates) among the eight categories of the visual stimuli, and suggest that, like anthropoid primate visual systems, the amygdala has been shaped over evolutionary time to detect appearance of potentially threatening stimuli including both emotional faces and snakes, the first of the modern predators of primates.
Read full abstract