Owing to its ability to depict the pathologic features of multiple sclerosis (MS) in exquisite detail, conventional magnetic resonance (MR) imaging has become an established tool in the diagnosis of this disease and in monitoring its evolution. MR imaging has been formally included in the diagnostic work-up of patients who present with a clinically isolated syndrome suggestive of MS, and ad hoc diagnostic criteria have been proposed and are updated on a regular basis. In patients with established MS and in those participating in treatment trials, examinations performed with conventional MR pulse sequences provide objective measures to monitor disease activity and progression; however, they have a limited prognostic role. This has driven the application of newer MR imaging technologies, including higher-field-strength MR units, to estimate overall MS burden and mechanisms of recovery in patients at different stages of the disease. These techniques have allowed in vivo assessment of the heterogeneity of MS pathologic features in focal lesions and in normal-appearing tissues. More recently, some of the finer details of MS, including macrophage infiltration and abnormal iron deposition, have become quantifiable with MR imaging. The utility of these modern MR techniques in clinical trial monitoring and in the assessment of the individual patient's response to treatment still need to be evaluated.